

flexmock - Testing Library

	Authors

	Slavek Kabrda [http://github.com/bkabrda], Herman Sheremetyev [http://github.com/has207]

	Version

	0.10.10

	Homepage

	flexmock Homepage [http://flexmock.readthedocs.org]

	Contribute

	flexmock on Github [http://github.com/bkabrda/flexmock]

	Download

	http://pypi.python.org/pypi/flexmock

	License

	FreeBSD-style License [http://github.com/bkabrda/flexmock/blob/master/LICENSE]

	Issue tracker

	Issue Tracker [http://github.com/bkabrda/flexmock/issues]

flexmock is a testing library for Python.

Its API is inspired by a Ruby library of the same name.
However, it is not a goal of Python flexmock to be a clone of the Ruby version.
Instead, the focus is on providing full support for testing Python programs
and making the creation of fake objects as unobtrusive as possible.

As a result, Python flexmock removes a number of redundancies in
the Ruby flexmock API, alters some defaults, and introduces a number of Python-only features.

flexmock’s design focuses on simplicity and intuitivenes. This means that the API
is as lean as possible, though a few convenient short-hand methods are provided to aid
brevity and readability.

flexmock declarations are structured to read more like English sentences than API calls,
and it is possible to chain them together in any order to achieve high degree of
expressiveness in a single line of code.

Installation

$ sudo easy_install flexmock

Or download the tarball, unpack it and run:

$ sudo python setup.py install

Compatibility

Tested to work with:

	python 2.7

	python 3.4

	python 3.5

	python 3.6

	python 3.7

	pypy

	pypy3

Automatically integrates with all major test runners, including:

	unittest

	unittest2

	nose

	py.test

	django

	twisted / trial

	doctest

	zope.testrunner

	subunit

	testtools

Start Here

	Start Here
	Creating fake objects

	Replacing parts of existing objects and classes (stubs)

	Creating and checking expectations
	Mocks

	Spies

	Summary

User Guide

	Usage Documentation
	Definitions

	Overview

	Example Usage
	Setup

	Fake objects

	Partial mocks

	Attributes and properties

	Shorthand

	Class level mocks

	Automatically checked expectations

	Exceptions

	Spies (proxies)

	Multiple return values

	Fake new instances

	Generators

	Private methods

	Call order

	State Support

	Chained methods

	Replacing methods

	Builtin functions

	Expectation Matching

	Style

API

	flexmock API

Changelog

	Changelog
	Release 0.10.10
	Fixed

	Release 0.10.9
	Fixed

	Release 0.10.8
	Fixed

	Release 0.10.7
	Fixed

	Release 0.10.6
	Fixed

	Release 0.10.5
	Added

	Fixed

	Release 0.10.4

	Release 0.10.3

	Release 0.10.2

	Release 0.10.1

	Release 0.10.0

	Release 0.9.7

	Release 0.9.6

	Release 0.9.5

	Release 0.9.4

	Release 0.9.3

	Release 0.9.2

	Release 0.9.1

	Release 0.9.0

	Release 0.8.1

	Release 0.8.0

	Release 0.7.4.2

	Release 0.7.4.1

	Release 0.7.4

	Release 0.7.3

	Release 0.7.2

	Release 0.7.1

	Release 0.7.0

	Release 0.6.9

	Release 0.6.8

	Release 0.6.7

	Release 0.6.6

	Release 0.6.5

	Release 0.6.4

	Release 0.6.3

	Release 0.6.2

	Release 0.6.1

	Release 0.6

	Release 0.5

	Release 0.4

	Release 0.3

Comparison

	Mock Library Comparison
	(flexmock for Mox or Mock users.)
	Simple fake object (attributes only)

	Simple fake object (with methods)

	Simple mock

	Creating partial mocks

	Ensure calls are made in specific order

	Raising exceptions

	Override new instances of a class

	Verify a method was called multiple times

	Mock chained methods

	Mock context manager

	Mocking the builtin open used as a context manager

Start Here

So what does flexmock actually help you do?

Creating fake objects

Making a new object in Python requires defining a new class with all the
fake methods and attributes you’re interested in emulating and then instantiating it.
For example, to create a FakePlane object to use in a test in place of a real Plane object we would need to do something like:

class FakePlane(object):
 operational = True
 model = "MIG-21"
 def fly(self): pass

plane = FakePlane() # this is tedious!

In other words, we must first create a class, make sure it contains all required attributes and methods, and finally instantiate it to create the object.

flexmock provides an easier way to generate a fake object on the fly using the flexmock()
function:

plane = flexmock(
 operational=True,
 model="MIG-21")

It is also possible to add methods to this object using the same notation and Python’s handy lambda keyword to turn an attribute into a method:

plane = flexmock(
 operational=True,
 model="MIG-21",
 fly=lambda: None)

Replacing parts of existing objects and classes (stubs)

While creating fake objects from scratch is often sufficient, many times it is easier
to take an existing object and simply stub out certain methods or replace them with
fake ones. flexmock makes this easy as well:

flexmock(
 Train, # this can be an instance, a class, or a module
 get_destination="Tokyo",
 get_speed=200)

By passing a real object (or class or module) into the flexmock() function as the first argument
it is possible to modify that object in place and provide default return values for
any of its existing methods.

In addition to simply stubbing out return values, it can be useful to be able to call
an entirely different method and substitute return values based on test-specific conditions:

(flexmock(Train)
 .should_receive("get_route")
 .replace_with(lambda x: custom_get_route()))

Creating and checking expectations

flexmock features smooth integration with pretty much every popular test runner, so no special setup is necessary. Simply
importing flexmock into your test module is sufficient to get started with any of the
following examples.

Mocks

Expectations take many flavors, and flexmock has many different facilities and modes to generate them.
The first and simplest is ensuring that a certain method is called:

flexmock(Train).should_receive("get_destination").once()

The .once() modifier ensures that Train.get_destination() is called at some point during the test and
will raise an exception if this does not happen.

Of course, it is also possible to provide a default return value:

flexmock(Train).should_receive("get_destination").once().and_return("Tokyo")

Or check that a method is called with specific arguments:

flexmock(Train).should_receive("set_destination").with_args("Tokyo").at_least().times(1)

In this example we used .times(1) instead of .once() and added the .at_least() modifier
to demonstate that it is easy to match any number of calls, including 0 calls or a variable amount of
calls. As you’ve probably guessed there is also an at_most() modifier.

Spies

While replacing method calls with canned return values or checking that they are called with
specific arguments is quite useful, there are also times when you want to execute the actual method
and simply find out how many times it was called. flexmock uses should_call() to generate this
sort of expectations instead of should_receive():

flexmock(Train).should_call("get_destination").once()

In the above case the real get_destination() method will be executed, but flexmock will raise
an exception unless it is executed exactly once. All the modifiers allowed with should_receive()
can also be used with should_call() so it is possible to tweak the allowed arguments, return
values and call times.

(flexmock(Train)
 .should_call("set_destination")
 .once()
 .with_args(object, str, int)
 .and_raise(Exception, re.compile("^No such dest.*")))

The above example introduces a handful of new capabilities – raising exceptions, matching argument types (object naturally matches any argument type) and regex matching on string return values and arguments.

Summary

flexmock has many other features and capabilities, but hopefully the above overview has
given you enough of the flavor for the kind of things that it makes possible. For more
details see the User Guide.

Usage Documentation

Definitions

In order to discuss flexmock usage it’s important to define the
following terms.

	Stub

	fake object that returns a canned value

	Mock

	fake object that returns a canned value and has an expectation, i.e. it includes a built-in assertion

	Spy

	watches method calls and records/verifies if the method is called with required parameters and/or returns expected values/exceptions

Overview

flexmock declarations follow a consistent style of the following 3 forms:

flexmock (OBJECT).COMMAND(ATTRIBUTE).MODIFIER[.MODIFIER, ...]

- or -

flexmock (OBJECT [, ATTRIBUTE=VALUE, ...])

- or -

flexmock (ATTRIBUTE=VALUE [, ATTRIBUTE=VALUE,...])

OBJECT:

 Either a module, a class, or an instance of a class

COMMAND:

 One of should_receive, should_call, or new_instances. These
 create the initial expectation object.

ATTRIBUTE:

 String name of an attribute

MODIFIER:

 One of several Expectation modifiers, such as with_args,
 and_return, should_raise, times, etc.

VALUE:

 Anything

Example Usage

Setup

from flexmock import flexmock

This will include flexmock in your test and make the necessary runner modifications
so no further setup or cleanup is necessary.

Since version 0.10.0, it’s also possible to call flexmock module directly, so you
can just do:

import flexmock

Fake objects

fake = flexmock() # creates an object with no attributes

Specify attribute/return value pairs

fake_plane = flexmock(
 model="MIG-16",
 condition="used")

Specify methods/return value pairs

fake_plane = flexmock(
 fly=lambda: "voooosh!",
 land=lambda: "landed!")

You can mix method and non-method attributes by making the return value a lambda for callable attributes.

flexmock fake objects support the full range of flexmock commands but
differ from partial mocks (described below) in that should_receive()
can assign them new methods rather than being limited to acting on methods
they already possess.

fake_plane = flexmock(fly=lambda: "vooosh!")
fake_plane.should_receive("land").and_return("landed!")

Partial mocks

flexmock provides three syntactic ways to hook into an existing object and override its methods.

Mark the object as partially mocked, allowing it to be used to create new expectations

flexmock(plane)
plane.should_receive('fly').and_return('vooosh!').once()
plane.should_receive('land').and_return('landed!').once()

Equivalent syntax assigns the partially mocked object to a variable

plane = flexmock(plane)
plane.should_receive('fly').and_return('vooosh!').once()
plane.should_receive('land').and_return('landed!').once()

Or you can combine everything into one line if there is only one method to override

flexmock(plane).should_receive('fly').and_return('vooosh!').once()

You can also return the mock object after setting the expectations

plane = flexmock(plane).should_receive('fly').and_return('vooosh!').mock()

Note the “mock” modifier above – the expectation chain returns an expectation otherwise

plane.should_receive('land').with_args().and_return('foo', 'bar')

	NOTE

	If you do not provide a with_args() modifier then any set of arguments, including none, will be matched. However, if you specify with_args() the expectation will only match exactly zero arguments.

	NOTE

	If you do not provide a return value then None is returned by default. Thus, and_return() is equivalent to and_return(None) is equivalent to simply leaving off and_return.

Attributes and properties

Just as you’re able to stub return values for functions and methods, flexmock also
allows to stub out non-callable attributes and even (getter) properties.
Syntax for this is exactly the same as for methods and functions.

Shorthand

Instead of writing out the lengthy should_receive/and_return statements, you can
also use the handy shorthand approach of passing them in as key=value pairs
to the flexmock() function. For example, we can stub out two methods of the plane object
in the same call:

flexmock(plane, fly='voooosh!', land=('foo', 'bar'))

This approach is handy and quick but only limited to stubs, i.e.
it is not possible to further modify these kind of calls with any of
the usual modifiers described below.

Class level mocks

If the object your partially mock is a class, flexmock effectively replaces the
method for all instances of that class.

>>> class User:
>>> def get_name(self):
>>> return 'George Bush'
>>>
>>> flexmock(User)
>>> User.should_receive('get_name').and_return('Bill Clinton')
>>> bubba = User()
>>> bubba.get_name()
'Bill Clinton'

Automatically checked expectations

Using the times(N) modifier, or its aliases – once, twice, never –
allows you to create expectations that will be automatically checked by
the test runner.

Ensure fly(‘forward’) gets called exactly three times

(flexmock(plane)
 .should_receive('fly')
 .with_args('forward')
 .times(3))

Ensure turn(‘east’) gets called at least twice

(flexmock(plane)
 .should_receive('turn')
 .with_args('east')
 .at_least().twice())

Ensure land(‘airfield’) gets called at most once

(flexmock(plane)
 .should_receive('land')
 .with_args('airfield')
 .at_most().once())

Ensure that crash(‘boom!’) is never called

(flexmock(plane)
 .should_receive('crash')
 .with_args('boom!')
 .never())

Exceptions

You can make the mocked method raise an exception instead of returning a value.

(flexmock(plane)
 .should_receive('fly')
 .and_raise(BadWeatherException))

Or you can add a message to the exception being raised

(flexmock(plane)
 .should_receive('fly')
 .and_raise(BadWeatherException, 'Oh noes, rain!'))

Spies (proxies)

In addition to stubbing out a given method and returning fake values,
flexmock also allows you to call the original method and make
expectations based on its return values/exceptions and the number of
times the method is called with the given arguments.

Matching specific arguments

(flexmock(plane)
 .should_call('repair')
 .with_args(wing, cockpit)
 .once())

Matching any arguments

(flexmock(plane)
 .should_call('turn')
 .twice())

Matching specific return values

(flexmock(plane)
 .should_call('land')
 .and_return('landed!'))

Matching a regular expression

(flexmock(plane)
 .should_call('land')
 .and_return(re.compile('^la')))

Match return values by class/type

(flexmock(plane)
 .should_call('fly')
 .and_return(str, object, None))

Ensure that an appropriate exception is raised

(flexmock(plane)
 .should_call('fly')
 .and_raise(BadWeatherException))

Check that the exception message matches your expectations

(flexmock(plane)
 .should_call('fly')
 .and_raise(BadWeatherException, 'Oh noes, rain!'))

Check that the exception message matches a regular expression

(flexmock(plane)
 .should_call('fly')
 .and_raise(BadWeatherException, re.compile('rain')))

If either and_return() or and_raise() is provided, flexmock will
verify that the return value matches the expected return value or
exception.

	NOTE

	should_call() changes the behavior of and_return() and and_raise() to specify expectations rather than generate given values or exceptions.

Multiple return values

It’s possible for the mocked method to return different values on successive calls.

>>> flexmock(group).should_receive('get_member').and_return('user1').and_return('user2').and_return('user3')
>>> group.get_member()
'user1'
>>> group.get_member()
'user2'
>>> group.get_member()
'user3'

Or use the short-hand form

(flexmock(group)
 .should_receive('get_member')
 .and_return('user1', 'user2', 'user3')
 .one_by_one())

You can also mix return values with exception raises

(flexmock(group)
 .should_receive('get_member')
 .and_return('user1')
 .and_raise(Exception)
 .and_return('user2'))

Fake new instances

Occasionally you will want a class to create fake objects when it’s
being instantiated. flexmock makes it easy and painless.

Your first option is to simply replace the class with a function.

(flexmock(some_module)
 .should_receive('NameOfClass')
 .and_return(fake_instance))
fake_instance can be created with flexmock as well

The upside of this approach is that it works for both new-style and old-style
classes. The downside is that you may run into subtle issues since the
class has now been replaced by a function.

If you’re dealing with new-style classes, flexmock offers another alternative using the .new_instances() method.

>>> class Group(object): pass
>>> fake_group = flexmock(name='fake')
>>> flexmock(Group).new_instances(fake_group)
>>> Group().name == 'fake'
True

It is also possible to return different fake objects in a sequence.

>>> class Group(object): pass
>>> fake_group1 = flexmock(name='fake')
>>> fake_group2 = flexmock(name='real')
>>> flexmock(Group).new_instances(fake_group1, fake_group2)
>>> Group().name == 'fake'
True
>>> Group().name == 'real'
True

Another approach, if you’re familiar with how instance instatiation is done in Python, is to stub the __new__ method directly.

>>> flexmock(Group).should_receive('__new__').and_return(fake_group)
>>> # or, if you want to be even slicker
>>> flexmock(Group, __new__=fake_group)

In fact, the new_instances command is simply shorthand for should_receive(‘__new__’).and_return() under the hood.

Note, that Python issue 25731 [http://bugs.python.org/issue25731] causes a problem with restoring the original __new__ method. It has been already fixed upstream, but all versions of Python 3 lower than 3.5.2 are affected and will probably never receieve a bug fix for this. If you’re using some of the affected versions and are getting TypeError: object() takes no parameters, you’re hitting this issue (original bug report is at flexmock issue 13 [https://github.com/bkabrda/flexmock/issues/13].

Generators

In addition to returning values and raising exceptions, flexmock can also turn
the mocked method into a generator that yields successive values.

>>> flexmock(plane).should_receive('flight_log').and_yield('take off', 'flight', 'landing')
>>> for i in plane.flight_log():
>>> print i
'take off'
'flight'
'landing'

You can also use Python’s builtin iter() function to generate an iterable return value.

flexmock(plane, flight_log=iter(['take off', 'flight', 'landing']))

In fact, the and_yield() modifier is just shorthand for should_receive().and_return(iter)
under the hood.

Private methods

One of the small pains of writing unit tests is that it can be
difficult to get at the private methods since Python “conveniently”
renames them when you try to access them from outside the object. With
flexmock there is nothing special you need to do to – mocking private
methods is exactly the same as any other methods.

Call order

flexmock does not enforce call order by default, but it’s easy to do if you need to.

(flexmock(plane)
 .should_receive('fly')
 .with_args('forward')
 .and_return('ok')
 .ordered())
(flexmock(plane)
 .should_receive('fly')
 .with_args('up')
 .and_return('ok')
 .ordered())

The order of the flexmock calls is the order in which these methods will need to be
called by the code under test.

If method fly() above is called with the right arguments in the declared order things
will be fine and both will return ‘ok’.
But trying to call fly(‘up’) before fly(‘forward’) will result in an exception.

State Support

flexmock supports conditional method execution based on external state.
Consider the rather contrived Radio class with the following methods:

>>> class Radio:
... is_on = False
... def switch_on(self): self.is_on = True
... def switch_off(self): self.is_on = False
... def select_channel(self): return None
... def adjust_volume(self, num): self.volume = num
>>> radio = Radio()

Now we can define some method call expectations dependent on the state of the radio:

>>> flexmock(radio)
>>> radio.should_receive('select_channel').once().when(lambda: radio.is_on)
>>> radio.should_call('adjust_volume').once().with_args(5).when(lambda: radio.is_on)

Calling these while the radio is off will result in an error:

>>> radio.select_channel()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "flexmock.py", line 674, in mock_method
 (method, expectation._get_runnable()))
flexmock.StateError: select_channel expected to be called when condition is True

>>> radio.adjust_volume(5)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "flexmock.py", line 674, in mock_method
 (method, expectation._get_runnable()))
flexmock.StateError: adjust_volume expected to be called when condition is True
Traceback (most recent call last):

Turning the radio on will make things work as expected:

>>> radio.is_on = True
>>> radio.select_channel()
>>> radio.adjust_volume(5)

Chained methods

Let’s say you have some code that looks something like the following:

http = HTTP()
results = (http.get_url('http://www.google.com')
 .parse_html()
 .display_results())

You could use flexmock to mock each of these method calls individually:

mock = flexmock(get_url=lambda: flexmock(parse_html=lambda: flexmock(display_results='ok')))
flexmock(HTTP).new_instances(mock)

But that looks really error prone and quite difficult to parse when
reading. Here’s a better way:

mock = flexmock()
flexmock(HTTP).new_instances(mock)
mock.should_receive('get_url.parse_html.display_results').and_return('ok')

When using this short-hand, flexmock will create intermediate objects
and expectations, returning the final one in the chain. As a result, any
further modifications, such as with_args() or times() modifiers, will
only be applied to the final method in the chain. If you need finer
grained control, such as specifying specific arguments to an
intermediate method, you can always fall back to the above long version.

Word of caution: because flexmock generates temporary intermediate mock objects
for each step along the chain, trying to mock two method call chains with the
same prefix will not work. That is, doing the following will fail to set up
the stub for display_results() because the one for save_results() overrides it:

flexmock(HTTP).should_receive('get_url.parse_html.display_results').and_return('ok')
flexmock(HTTP).should_receive('get_url.parse_html.save_results').and_return('ok')

In this situation, you should identify the point where the chain starts to
diverge and return a flexmock() object that handles all the “tail”
methods using the same object:

(flexmock(HTTP)
 .should_receive('get_url.parse_html')
 .and_return(flexmock(display_results='ok', save_results='ok')))

Replacing methods

There are times when it is useful to replace a method with a custom lambda or
function, rather than simply stubbing it out, in order to return custom values
based on provided arguments or a global value that changes between method calls.

(flexmock(plane)
 .should_receive('set_speed')
 .replace_with(lambda x: x == 5))

There is also shorthand for this, similar to the shorthand for should_receive/and_return:

flexmock(plane, set_speed=lambda x: x == 5)

	NOTE

	Whenever the return value provided to the key=value shorthand is a callable (such as lambda), flexmock expands it to should_receive().replace_with() rather than should_receive().and_return().

Builtin functions

Mocking or stubbing out builtin functions, such as open(), can be slightly tricky.
The “builtins” module is accessed differently in interactive Python sessions versus
running applications and named differently in Python 3.0 and above.

It is also not always obvious when the builtin function you are trying to mock might be
internally called by the test runner and cause unexpected behavior in the test.
As a result, the recommended way to mock out builtin functions is to always specify
a fall-through with should_call() first and use with_args() to limit the scope of
your mock or stub to just the specific invocation you are trying to replace:

python 2.4+
mock = flexmock(sys.modules['__builtin__'])
mock.should_call('open') # set the fall-through
(mock.should_receive('open')
 .with_args('/your/file')
 .and_return(flexmock(read=lambda: 'file contents')))

python 3.0+
mock = flexmock(sys.modules['builtins'])
mock.should_call('open') # set the fall-through
(mock.should_receive('open')
 .with_args('/your/file')
 .and_return(flexmock(read=lambda: 'file contents')))

Expectation Matching

Creating an expectation with no arguments will by default match all
arguments, including no arguments.

>>> flexmock(plane).should_receive('fly').and_return('ok')

Will be matched by any of the following:

>>> plane.fly()
'ok'
>>> plane.fly('up')
'ok'
>>> plane.fly('up', 'down')
'ok'

You can also match exactly no arguments

(flexmock(plane)
 .should_receive('fly')
 .with_args())

Or match any single argument

(flexmock(plane)
 .should_receive('fly')
 .with_args(object))

	NOTE

	In addition to exact values, you can match against the type or class of the argument.

Match any single string argument

(flexmock(plane)
 .should_receive('fly')
 .with_args(str))

Match the empty string using a compiled regular expression

regex = re.compile('^(up|down)$')
(flexmock(plane)
 .should_receive('fly')
 .with_args(regex))

Match any set of three arguments where the first one is an integer,
second one is anything, and third is string ‘notes’
(matching against user defined classes is also supported in the same fashion)

(flexmock(plane)
 .should_receive('repair')
 .with_args(int, object, 'notes'))

And if the default argument matching based on types is not flexible enough,
flexmock will respect matcher objects that provide a custom __eq__ method.

For example, when trying to match against contents of numpy arrays,
equality is undefined by the library so comparing two of them directly
is meaningless unless you use all() or any() on the return value of the comparison.

What you can do in this case is create a custom matcher object and flexmock will
use its __eq__ method when comparing the arguments at runtime.

class NumpyArrayMatcher(object):
 def __init__(self, array): self.array = array
 def __eq__(self, other): return all(other == self.array)

(flexmock(obj)
 .should_receive('function')
 .with_args(NumpyArrayMatcher(array1)))

The above approach will work for any objects that choose not to return proper
boolean comparison values, or if you simply find the default equality and
type-based matching not sufficiently specific.

It is, of course, also possible to create multiple expectations for the same
method differentiated by arguments.

>>> flexmock(plane).should_receive('fly').and_return('ok')
>>> flexmock(plane).should_receive('fly').with_args('up').and_return('bad')

Try to excecute plane.fly() with any, or no, arguments as defined by the first
flexmock call will return the first value.

>>> plane.fly()
'ok'
>>> plane.fly('forward', 'down')
'ok'

But! If argument values match the more specific flexmock call the function
will return the other return value.

>>> plane.fly('up')
'bad'

The order of the expectations being defined is significant, with later
expectations having higher precedence than previous ones. Which means
that if you reversed the order of the example expectations above the
more specific expectation would never be matched.

Style

While the order of modifiers is unimportant to flexmock, there is a preferred convention
that will make your tests more readable.

If using with_args(), place it before should_return(), and_raise() and and_yield() modifiers:

(flexmock(plane)
 .should_receive('fly')
 .with_args('up', 'down')
 .and_return('ok'))

If using the times() modifier (or its aliases: once, twice, never), place them at
the end of the flexmock statement:

(flexmock(plane)
 .should_receive('fly')
 .and_return('ok')
 .once())

flexmock API

	
flexmock.flexmock(spec=None, **kwargs)[source]

	Main entry point into the flexmock API.

This function is used to either generate a new fake object or take
an existing object (or class or module) and use it as a basis for
a partial mock. In case of a partial mock, the passed in object
is modified to support basic Mock class functionality making
it unnecessary to make successive flexmock() calls on the same
objects to generate new expectations.

	Examples:

	>>> flexmock(SomeClass)
>>> SomeClass.should_receive('some_method')

NOTE: it’s safe to call flexmock() on the same object, it will detect
when an object has already been partially mocked and return it each time.

	Args:

	
	spec: object (or class or module) to mock

	kwargs: method/return_value pairs to attach to the object

	Returns:

	Mock object if no spec is provided. Otherwise return the spec object.

	
class flexmock.Mock(**kwargs)[source]

	Fake object class returned by the flexmock() function.

	
new_instances(*kargs)[source]

	Overrides __new__ method on the class to return custom objects.

Alias for should_receive(‘__new__’).and_return(kargs).one_by_one

	Args:

	
	kargs: objects to return on each successive call to __new__

	Returns:

	
	Expectation object

	
should_call(name)[source]

	Creates a spy.

This means that the original method will be called rather than the fake
version. However, we can still keep track of how many times it’s called and
with what arguments, and apply expectations accordingly.

should_call is meaningless/not allowed for non-callable attributes.

	Args:

	
	name: string name of the method

	Returns:

	
	Expectation object

	
should_receive(name)[source]

	Replaces the specified attribute with a fake.

	Args:

	
	name: string name of the attribute to replace

	Returns:

	
	Expectation object which can be used to modify the expectations
on the fake attribute

	
class flexmock.Expectation(mock, name=None, return_value=None, original=None, method_type=None)[source]

	Holds expectations about methods.

The information contained in the Expectation object includes method name,
its argument list, return values, and any exceptions that the method might
raise.

	
and_raise(exception, *kargs, **kwargs)[source]

	Specifies the exception to be raised when this expectation is met.

	Args:

	
	exception: class or instance of the exception

	kargs: optional keyword arguments to pass to the exception

	kwargs: optional named arguments to pass to the exception

	Returns:

	
	self, i.e. can be chained with other Expectation methods

	
and_return(*values)[source]

	Override the return value of this expectation’s method.

When and_return is given multiple times, each value provided is returned
on successive invocations of the method. It is also possible to mix
and_return with and_raise in the same manner to alternate between returning
a value and raising and exception on different method invocations.

When combined with the one_by_one property, value is treated as a list of
values to be returned in the order specified by successive calls to this
method rather than a single list to be returned each time.

	Args:

	
	values: optional list of return values, defaults to None if not given

	Returns:

	
	self, i.e. can be chained with other Expectation methods

	
and_yield(*kargs)[source]

	Specifies the list of items to be yielded on successive method calls.

In effect, the mocked object becomes a generator.

	Returns:

	
	self, i.e. can be chained with other Expectation methods

	
at_least()[source]

	Modifies the associated times() expectation.

When given, an exception will only be raised if the method is called less
than times() specified. Does nothing if times() is not given.

	Returns:

	
	self, i.e. can be chained with other Expectation methods

	
at_most()[source]

	Modifies the associated “times” expectation.

When given, an exception will only be raised if the method is called more
than times() specified. Does nothing if times() is not given.

	Returns:

	
	self, i.e. can be chained with other Expectation methods

	
mock()[source]

	Return the mock associated with this expectation.

	
one_by_one()[source]

	Modifies the return value to be treated as a list of return values.

Each value in the list is returned on successive invocations of the method.

	Returns:

	
	self, i.e. can be chained with other Expectation methods

	
ordered()[source]

	Makes the expectation respect the order of should_receive statements.

An exception will be raised if methods are called out of order, determined
by order of should_receive calls in the test.

	Returns:

	
	self, i.e. can be chained with other Expectation methods

	
replace_with(function)[source]

	Gives a function to run instead of the mocked out one.

	Args:

	
	function: callable

	Returns:

	
	self, i.e. can be chained with other Expectation methods

	
times(number)[source]

	Number of times this expectation’s method is expected to be called.

There are also 3 aliases for the times() method:

	once() -> times(1)

	twice() -> times(2)

	never() -> times(0)

	Args:

	
	number: int

	Returns:

	
	self, i.e. can be chained with other Expectation methods

	
when(func)[source]

	Sets an outside resource to be checked before executing the method.

	Args:

	
	func: function to call to check if the method should be executed

	Returns:

	
	self, i.e. can be chained with other Expectation methods

	
with_args(*kargs, **kwargs)[source]

	Override the arguments used to match this expectation’s method.

	Args:

	
	kargs: optional keyword arguments

	kwargs: optional named arguments

	Returns:

	
	self, i.e. can be chained with other Expectation methods

Changelog

This project follows semantic versioning.

Types of changes:

	Added: New features.

	Changed: Changes in existing functionality.

	Deprecated: Soon-to-be removed features.

	Removed: Removed features.

	Fixed: Bug fixes.

	Infrastructure: Changes in build or deployment infrastructure.

	Documentation: Changes in documentation.

Release 0.10.10

Fixed

	Fix AttributeError raised when mocking a proxied object.

Release 0.10.9

Fixed

	Fix flexmock not mocking methods properly on derived classes.

Release 0.10.8

Fixed

	Fix with_args not working built-in functions.

Release 0.10.7

Fixed

	Fix with_args not working built-in methods.

	Fix previous pytest --durations fix not working.

Release 0.10.6

Fixed

	Fix flexmock broken with Pytest 4 & 5.

	Fix new_instances method not working with Python 2.7.

	Fix multiple expectations for the same classmethod are not matched.

Release 0.10.5

Added

	Improve error message on unmatched method signature expectation.

Fixed

	Fix using should_call passes wrong runtime_self.

	Fix pytest --durations flag when flexmock is installed.

Release 0.10.4

	drop Python 2.6, 3.3 and Jython support

	add Python 3.6 and 3.7 support

	don’t hide exception when flexmock is used as context manager

	fix expectation reset for static methods on pypy 2

	ensure original exception isn’t suppressed in pytest hook

Release 0.10.3

	fix compatibility with py.test 4.1

	minor documentation fixes

Release 0.10.2

	fix recognizing whether mocked object is a method or not on Python 3

Release 0.10.1

	fix decode problem in setup.py on Python 3

Release 0.10.0

	new official upstream repository: https://github.com/bkabrda/flexmock/

	new official homepage: https://flexmock.readthedocs.org

	adopted the official BSD 2-clause license
https://en.wikipedia.org/wiki/BSD_licenses#2-clause_license_.28.22Simplified_BSD_License.22_or_.22FreeBSD_License.22.29

	add support for calling flexmock module directly

	add support for mocking keyword-only args

	add support for Python 3.4 and 3.5

	drop support for Python 2.4, 2.5, 3.1 and 3.2

	add __version__ attribute to flexmock module

	add various metadata to the package archive

	fix properly find out whether function is method or not
and thanks to that don’t strip first args of functions

	fix should_call to work when function returns None or False

	fix various py.test issues

	fix CallOrderError with same subsequent mocking calls

	fix PyPy support issues

	various code style issues were fixed, 4-spaces indent is now used

Release 0.9.7

	small update to add support for TeamCity / PyCharm test runner.

Release 0.9.6

	fix staticmethod mocking on instances

	fix comparison of kwargs ordering issues

	fix ReturnValue.__str__

Release 0.9.5

	bugfix: stop enforcing argument signatures on flexmock objects

Release 0.9.4

	add support for stubbing return values on getter properties

	add custom matcher object support to with_args

	add support for striter function signature checks

	add support for non-callable attributes

	add support chained attributes (thanks Bryce Covert!)

	add iter support to Mock objects

	add PyPy support

	add Jython support

	fix should_call to work with class mocks

	fix and_return to return None by default

	fix MRO issues on builtin methods on 2.7+/3.2+

	imporove defaults: partial mocks created using the func=return_value
style now default to replace_with instead of should_receive for callables

Release 0.9.3

	add python 3.3 test target

	add proper handling of ordered() expectation across different methods

	add property support on fake objects

	fix compatibility with pytest 2.2 (thanks jpvanhal!)

	fix insidious bug with mocking subclasses of str class

	fix tuple handling when formatting arguments

	fix reseting subclass methods

Release 0.9.2

	fix mocking builtins by reseting expectation when raising exceptions

	fix mocking private methods on classes with leading underscores

	limit the damage of from flexmock import * by limiting to just flexmock()

	ensure _pre_flexmock_success is cleaned up after each test

Release 0.9.1

	adding support for more test runners:

	unittest2

	django

	twisted/trial

	zope.testrunner

	subunit

	testtools

Release 0.9.0

	adding state machine support using when()

	make expectation fail as soon as number of expected calls is exceeded

	flexmock_teardown no longer returns a function

	allow should_call on class and static methods

	disallow should_call on class mocks

	fixing unicode args handling

	fixing issues with @property methods misbehaving in the debugger

	fixing pytest integration and instance teardown

	fixing private method handling

Release 0.8.1

	fixing pytest and doctest integration to always call flexmock_teardown

	fixing flexmock_teardown to return a function as before so it can be used as a decorator

Release 0.8.0

	big changes in runner integration support (no more stack examination or sketchy teardown replacement)

	doctest integration

	fixing ordering verification when the method has a default stub

	fixing calling with_args() without arguments to match exactly no arguments (thanks jerico-dev!)

	20% performance improvement

	make sure to return object itself when partial mocking instances unless the object already has some of the methods

	ensure consecutive calls return same mock object

Release 0.7.4.2

	adding regex support for arg matching and spy return values

	enabling replace_with for class mocks

	disabling expectation checking if an exception has already been raised

	massive refactoring of the way flexmock does monkey patching

Release 0.7.4.1

	Fixing replace_with to work properly like and_execute

	(and_execute will be deprecated in next release!)

Release 0.7.4

	Fixed exception type check when no message specified

	Make properties work optionally with parentheses

	Make sure should_receive does not replace flexmock methods

	Removed new_instances= param in favor of new_instances() method

	Refactoring to move all state to FlexmockContainer class

Release 0.7.3

	Added new_instances method (new_instances param will be deprecated in next release!)

	Added replace_with to enable returning results of custom functions

	Added with support for FlexMock objects

	Moved tests to their own directory

	Lots of documentation cleanup and updates

Release 0.7.2

	Added support for chained methods

	Moved flexmock_teardown to module level to expose it for other test runners

	Added py.test support (thanks to derdon)

	Lots of test refactoring and improvements for multiple test runner support

	Fix loop in teardown

	Fix should_call for same method with different args

Release 0.7.1

	Fix bug with “never” not working when the expectation is not met

	Fix bug in duplicate calls to original method in pass_thru mode (thanks sagara-!)

	Fix bug in handling unicode characters in ReturnValue

Release 0.7.0

	Better error handling for trying to mock builtins

	Added simple test harness for running on multiple versions / test runners

	Fixed unicode arg formatting (thanks to sagara-!)

	Made it impossible to mock non-existent methods

	Ensure flexmock teardown takes varargs (for better runner integration)

Release 0.6.9

	Initial nose integration (still no support for generated tests)

	Fixing private class methods

	Some test refactoring to support different test runners

Release 0.6.8

	Add should_call() alias for should_receive().and_execute

	Ensure new_instances can’t be used with expectation modifiers

	Make and_execute match return value by class in addition to value

	Support for mocking out static methods

	Bit of test fixage (thanks to derdon)

Release 0.6.7

	Fixing clobbering of original method by multiple flexmock calls

	Making and_raise work properly with exception classes and args

	Proper exception matching with and_execute

	Fix mocking same class twice

Release 0.6.6

	Removing extra args from should_receive

	Making and_execute check return/raise value of original method

	Refactoring FlexMock constructor into factory method

	Fixing new_instances to accept multiple args instead of just none

	Raising an exception when and_execute is set on class mock

Release 0.6.5

	Adding support for multiple flexmock() calls on same object

	Adding error detection on and_execute for missing or unbound methods

	Make sure empty args don’t include None

Release 0.6.4

	Fixing up teardown cleanup code after an exception is raised in tests

	Fixing and_yield to return proper generator

	Adding and_yield returning a predefined generator

	Replacing and_passthru with and_execute

	Make it easier to mock private methods

Release 0.6.3

	Adding keyword argument expectation matching

Release 0.6.2

	Changing and_return(multiple=True) to one_by_one

	Making it possible to supply multiple args to and_return instead of a tuple

	Changing default mock behavior to create attributes instead of methods

	FIX teardown for python3

Release 0.6.1

	Make it even easier to integrate with new test runners

	Adding support for mixing returns and raises in return values

Release 0.6

	Adding support for multiple arg type matches

	Pulling out the entry point code from constructor into its own method.

Release 0.5

	FIX: ensuring that mocks are cleaned up properly between tests

	BROKEN: part1 on ensuring mocking multiple objects works correctly

	Make sure pass_thru doesn’t try to call a non-existent method

	Fixing up copyright notice

	Adding some missing pydocs

Release 0.4

	Fixing tests and ensuring mock methods really get created properly

	Making sure shortcuts create methods rather than attributes

	Fixing doc strings

	Removing the new-style/old-style convert code, it’s stupid

Release 0.3

	Making Expectation.mock into a property so that it shows up in pydoc

	Adding proxying/spying and at_least/at_most expectation modifiers

Mock Library Comparison

(flexmock for Mox or Mock users.)

This document shows a side-by-side comparison of how to accomplish some
basic tasks with flexmock as well as other popular Python mocking libraries.

Simple fake object (attributes only)

flexmock
mock = flexmock(some_attribute="value", some_other_attribute="value2")
assertEquals("value", mock.some_attribute)
assertEquals("value2", mock.some_other_attribute)

Mox
mock = mox.MockAnything()
mock.some_attribute = "value"
mock.some_other_attribute = "value2"
assertEquals("value", mock.some_attribute)
assertEquals("value2", mock.some_other_attribute)

Mock
my_mock = mock.Mock()
my_mock.some_attribute = "value"
my_mock.some_other_attribute = "value2"
assertEquals("value", my_mock.some_attribute)
assertEquals("value2", my_mock.some_other_attribute)

Simple fake object (with methods)

flexmock
mock = flexmock(some_method=lambda: "calculated value")
assertEquals("calculated value", mock.some_method())

Mox
mock = mox.MockAnything()
mock.some_method().AndReturn("calculated value")
mox.Replay(mock)
assertEquals("calculated value", mock.some_method())

Mock
my_mock = mock.Mock()
my_mock.some_method.return_value = "calculated value"
assertEquals("calculated value", my_mock.some_method())

Simple mock

flexmock
mock = flexmock()
mock.should_receive("some_method").and_return("value").once()
assertEquals("value", mock.some_method())

Mox
mock = mox.MockAnything()
mock.some_method().AndReturn("value")
mox.Replay(mock)
assertEquals("value", mock.some_method())
mox.Verify(mock)

Mock
my_mock = mock.Mock()
my_mock.some_method.return_value = "value"
assertEquals("value", mock.some_method())
my_mock.some_method.assert_called_once_with()

Creating partial mocks

flexmock
flexmock(SomeObject).should_receive("some_method").and_return('value')
assertEquals("value", mock.some_method())

Mox
mock = mox.MockObject(SomeObject)
mock.some_method().AndReturn("value")
mox.Replay(mock)
assertEquals("value", mock.some_method())
mox.Verify(mock)

Mock
with mock.patch("SomeObject") as my_mock:
 my_mock.some_method.return_value = "value"
 assertEquals("value", mock.some_method())

Ensure calls are made in specific order

flexmock
mock = flexmock(SomeObject)
mock.should_receive('method1').once().ordered().and_return('first thing')
mock.should_receive('method2').once().ordered().and_return('second thing')
exercise the code

Mox
mock = mox.MockObject(SomeObject)
mock.method1().AndReturn('first thing')
mock.method2().AndReturn('second thing')
mox.Replay(mock)
exercise the code
mox.Verify(mock)

Mock
mock = mock.Mock(spec=SomeObject)
mock.method1.return_value = 'first thing'
mock.method2.return_value = 'second thing'
exercise the code
assert mock.method_calls == [('method1',) ('method2',)]

Raising exceptions

flexmock
mock = flexmock()
mock.should_receive("some_method").and_raise(SomeException("message"))
assertRaises(SomeException, mock.some_method)

Mox
mock = mox.MockAnything()
mock.some_method().AndRaise(SomeException("message"))
mox.Replay(mock)
assertRaises(SomeException, mock.some_method)
mox.Verify(mock)

Mock
my_mock = mock.Mock()
my_mock.some_method.side_effect = SomeException("message")
assertRaises(SomeException, my_mock.some_method)

Override new instances of a class

flexmock
flexmock(some_module.SomeClass).new_instances(some_other_object)
assertEqual(some_other_object, some_module.SomeClass())

Mox
(you will probably have mox.Mox() available as self.mox in a real test)
mox.Mox().StubOutWithMock(some_module, 'SomeClass', use_mock_anything=True)
some_module.SomeClass().AndReturn(some_other_object)
mox.ReplayAll()
assertEqual(some_other_object, some_module.SomeClass())

Mock
with mock.patch('somemodule.Someclass') as MockClass:
 MockClass.return_value = some_other_object
 assert some_other_object == some_module.SomeClass()

Verify a method was called multiple times

flexmock (verifies that the method gets called at least twice)
flexmock(some_object).should_receive('some_method').at_least().twice()
exercise the code

Mox
(does not support variable number of calls, so you need to create a new entry for each explicit call)
mock = mox.MockObject(some_object)
mock.some_method(mox.IgnoreArg(), mox.IgnoreArg())
mock.some_method(mox.IgnoreArg(), mox.IgnoreArg())
mox.Replay(mock)
exercise the code
mox.Verify(mock)

Mock
my_mock = mock.Mock(spec=SomeObject)
exercise the code
assert my_mock.some_method.call_count >= 2

Mock chained methods

flexmock
(intermediate method calls are automatically assigned to temporary fake objects
and can be called with any arguments)
(flexmock(some_object)
 .should_receive('method1.method2.method3')
 .with_args(arg1, arg2)
 .and_return('some value'))
assertEqual('some_value', some_object.method1().method2().method3(arg1, arg2))

Mox
mock = mox.MockObject(some_object)
mock2 = mox.MockAnything()
mock3 = mox.MockAnything()
mock.method1().AndReturn(mock1)
mock2.method2().AndReturn(mock2)
mock3.method3(arg1, arg2).AndReturn('some_value')
self.mox.ReplayAll()
assertEqual("some_value", some_object.method1().method2().method3(arg1, arg2))
self.mox.VerifyAll()

Mock
my_mock = mock.Mock()
my_mock.method1.return_value.method2.return_value.method3.return_value = 'some value'
method3 = my_mock.method1.return_value.method2.return_value.method3
method3.assert_called_once_with(arg1, arg2)
assertEqual('some_value', my_mock.method1().method2().method3(arg1, arg2))

Mock context manager

flexmock
my_mock = flexmock()
with my_mock:
 pass

Mock
my_mock = mock.MagicMock()
with my_mock:
 pass

Mox
my_mock = mox.MockAnything()
with my_mock:
 pass

Mocking the builtin open used as a context manager

The following examples work in an interactive Python session but may not work
quite the same way in a script, or with Python 3.0+. See examples in the
Builtin functions section for more specific flexmock instructions
on mocking builtins.

flexmock
(flexmock(__builtins__)
 .should_receive('open')
 .once()
 .with_args('file_name')
 .and_return(flexmock(read=lambda: 'some data')))
with open('file_name') as f:
 assertEqual('some data', f.read())

Mox
self_mox = mox.Mox()
mock_file = mox.MockAnything()
mock_file.read().AndReturn('some data')
self_mox.StubOutWithMock(__builtins__, 'open')
__builtins__.open('file_name').AndReturn(mock_file)
self_mox.ReplayAll()
with mock_file:
 assertEqual('some data', mock_file.read())
self_mox.VerifyAll()

Mock
with mock.patch('__builtin__.open') as my_mock:
 my_mock.return_value.__enter__ = lambda s: s
 my_mock.return_value.__exit__ = mock.Mock()
 my_mock.return_value.read.return_value = 'some data'
 with open('file_name') as h:
 assertEqual('some data', h.read())
my_mock.assert_called_once_with('foo')

A possibly more up-to-date version of this document, featuring more mocking
libraries, is availale at:

http://garybernhardt.github.com/python-mock-comparison/

 Python Module Index

 f

 		 	

 		
 f	

 	
 	
 flexmock	

Index

 A
 | E
 | F
 | M
 | N
 | O
 | R
 | S
 | T
 | W

A

 	
 	and_raise() (flexmock.Expectation method)

 	and_return() (flexmock.Expectation method)

 	
 	and_yield() (flexmock.Expectation method)

 	at_least() (flexmock.Expectation method)

 	at_most() (flexmock.Expectation method)

E

 	
 	Expectation (class in flexmock)

F

 	
 	flexmock (module)

 	
 	flexmock() (in module flexmock)

M

 	
 	Mock (class in flexmock)

 	
 	mock() (flexmock.Expectation method)

N

 	
 	new_instances() (flexmock.Mock method)

O

 	
 	one_by_one() (flexmock.Expectation method)

 	
 	ordered() (flexmock.Expectation method)

R

 	
 	replace_with() (flexmock.Expectation method)

S

 	
 	should_call() (flexmock.Mock method)

 	
 	should_receive() (flexmock.Mock method)

T

 	
 	times() (flexmock.Expectation method)

W

 	
 	when() (flexmock.Expectation method)

 	
 	with_args() (flexmock.Expectation method)

 Source code for flexmock

"""Copyright 2011-2015 Herman Sheremetyev, Slavek Kabrda. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice,
 this list of conditions and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""

from flexmock import * is evil, keep it from doing any damage
__all__ = ['flexmock']
__version__ = '0.10.10'

import inspect
import re
import sys
import types

AT_LEAST = 'at least'
AT_MOST = 'at most'
EXACTLY = 'exactly'
UPDATED_ATTRS = ['should_receive', 'should_call', 'new_instances']
DEFAULT_CLASS_ATTRIBUTES = [attr for attr in dir(type)
 if attr not in dir(type('', (object,), {}))]
RE_TYPE = re.compile('')
SPECIAL_METHODS = (classmethod, staticmethod)

class FlexmockError(Exception):
 pass

class MockBuiltinError(Exception):
 pass

class MethodSignatureError(FlexmockError):
 pass

class ExceptionClassError(FlexmockError):
 pass

class ExceptionMessageError(FlexmockError):
 pass

class StateError(FlexmockError):
 pass

class MethodCallError(FlexmockError):
 pass

class CallOrderError(FlexmockError):
 pass

class ReturnValue(object):
 def __init__(self, value=None, raises=None):
 self.value = value
 self.raises = raises

 def __str__(self):
 if self.raises:
 return '%s(%s)' % (self.raises, _arg_to_str(self.value))
 else:
 if not isinstance(self.value, tuple):
 return '%s' % _arg_to_str(self.value)
 elif len(self.value) == 1:
 return '%s' % _arg_to_str(self.value[0])
 else:
 return '(%s)' % ', '.join([_arg_to_str(x) for x in self.value])

class FullArgSpec(object):
 """Silly hack for inpsect.getargspec return a tuple on python <2.6"""
 def __init__(self, spec):
 if len(spec) == 4: # python2 => getargspec was used
 spec += ([], None, {})
 (self.args, self.varargs, self.keywords, self.defaults, self.kwonlyargs,
 self.kwonlydefaults, self.annotations) = spec

class FlexmockContainer(object):
 """Holds global hash of object/expectation mappings."""
 flexmock_objects = {}
 properties = {}
 ordered = []
 last = None

 @classmethod
 def reset(cls):
 cls.ordered = []
 cls.last = None
 cls.flexmock_objects = {}
 cls.properties = {}

 @classmethod
 def get_flexmock_expectation(cls, obj, name=None, args=None):
 """Retrieves an existing matching expectation."""
 if args is None:
 args = {'kargs': (), 'kwargs': {}}
 if not isinstance(args, dict):
 args = {'kargs': args, 'kwargs': {}}
 if not isinstance(args['kargs'], tuple):
 args['kargs'] = (args['kargs'],)
 if name and obj in cls.flexmock_objects:
 found = None
 for e in reversed(cls.flexmock_objects[obj]):
 if e.name == name and e.match_args(args):
 if e in cls.ordered or not e._ordered and not found:
 found = e
 if found and found._ordered:
 cls._verify_call_order(found, args)
 return found

 @classmethod
 def _verify_call_order(cls, expectation, args):
 if not cls.ordered:
 next_method = cls.last
 else:
 next_method = cls.ordered.pop(0)
 cls.last = next_method
 if expectation is not next_method:
 raise CallOrderError(
 '%s called before %s' %
 (_format_args(expectation.name, args),
 _format_args(next_method.name, next_method.args)))

 @classmethod
 def add_expectation(cls, obj, expectation):
 if obj in cls.flexmock_objects:
 cls.flexmock_objects[obj].append(expectation)
 else:
 cls.flexmock_objects[obj] = [expectation]

 @classmethod
 def add_teardown_property(cls, obj, name):
 if obj in cls.properties:
 cls.properties[obj].append(name)
 else:
 cls.properties[obj] = [name]

 @classmethod
 def teardown_properties(cls):
 for obj, names in cls.properties.items():
 for name in names:
 delattr(obj, name)

[docs]class Expectation(object):
 """Holds expectations about methods.

 The information contained in the Expectation object includes method name,
 its argument list, return values, and any exceptions that the method might
 raise.
 """

 def __init__(self, mock, name=None, return_value=None, original=None, method_type=None):
 self.name = name
 self.modifier = EXACTLY
 if original is not None:
 self.original = original
 self.args = None
 self.method_type = method_type
 self.argspec = None
 value = ReturnValue(return_value)
 self.return_values = return_values = []
 self._replace_with = None
 if return_value is not None:
 return_values.append(value)
 self.times_called = 0
 self.expected_calls = {
 EXACTLY: None,
 AT_LEAST: None,
 AT_MOST: None}
 self.runnable = lambda: True
 self._mock = mock
 self._pass_thru = False
 self._ordered = False
 self._one_by_one = False
 self._verified = False
 self._callable = True
 self._local_override = False

 def __str__(self):
 return '%s -> (%s)' % (_format_args(self.name, self.args),
 ', '.join(['%s' % x for x in self.return_values]))

 def __call__(self):
 return self

 def __getattribute__(self, name):
 if name == 'once':
 return _getattr(self, 'times')(1)
 elif name == 'twice':
 return _getattr(self, 'times')(2)
 elif name == 'never':
 return _getattr(self, 'times')(0)
 elif name in ('at_least', 'at_most', 'ordered', 'one_by_one'):
 return _getattr(self, name)()
 elif name == 'mock':
 return _getattr(self, 'mock')()
 else:
 return _getattr(self, name)

 def __getattr__(self, name):
 self.__raise(
 AttributeError,
 "'%s' object has not attribute '%s'" % (self.__class__.__name__, name))

 def _get_runnable(self):
 """Ugly hack to get the name of when() condition from the source code."""
 name = 'condition'
 try:
 source = inspect.getsource(self.runnable)
 if 'when(' in source:
 name = source.split('when(')[1].split(')')[0]
 elif 'def ' in source:
 name = source.split('def ')[1].split('(')[0]
 except: # couldn't get the source, oh well
 pass
 return name

 def _verify_signature_match(self, *kargs, **kwargs):
 if isinstance(self._mock, Mock):
 return # no sense in enforcing this for fake objects
 allowed = self.argspec
 args_len = len(allowed.args)

 # self is the first expected argument
 has_self = allowed.args and allowed.args[0] == "self"
 # Builtin methods take `self` as the first argument but `inspect.ismethod` returns False
 # so we need to check for them explicitly
 is_builtin_method = isinstance(self.original, types.BuiltinMethodType) and has_self
 # Methods take `self` if not a staticmethod
 is_method = inspect.ismethod(self.original) and self.method_type is not staticmethod
 # Class init takes `self`
 is_class = inspect.isclass(self.original)
 # When calling class methods or instance methods on a class method takes `cls`
 is_class_method = (
 inspect.isfunction(self.original)
 and inspect.isclass(self._mock)
 and self.method_type is not staticmethod
)
 if is_builtin_method or is_method or is_class or is_class_method:
 # Do not count `self` or `cls`.
 args_len -= 1
 minimum = args_len - (allowed.defaults and len(allowed.defaults) or 0)
 maximum = None
 if allowed.varargs is None and allowed.keywords is None:
 maximum = args_len
 total_positional = len(
 kargs + tuple(a for a in kwargs if a in allowed.args))
 named_optionals = [a for a in kwargs
 if allowed.defaults
 if a in allowed.args[len(allowed.args) - len(allowed.defaults):]]
 if allowed.defaults and total_positional == minimum and named_optionals:
 minimum += len(named_optionals)
 if total_positional < minimum:
 raise MethodSignatureError(
 '%s requires at least %s arguments, expectation provided %s' %
 (self.name, minimum, total_positional))
 if maximum is not None and total_positional > maximum:
 raise MethodSignatureError(
 '%s requires at most %s arguments, expectation provided %s' %
 (self.name, maximum, total_positional))
 if args_len == len(kargs) and any(a for a in kwargs if a in allowed.args):
 raise MethodSignatureError(
 '%s already given as positional arguments to %s' %
 ([a for a in kwargs if a in allowed.args], self.name))
 if (not allowed.keywords and
 any(a for a in kwargs if a not in allowed.args + allowed.kwonlyargs)):
 raise MethodSignatureError(
 '%s is not a valid keyword argument to %s' %
 ([a for a in kwargs
 if a not in (allowed.args + allowed.kwonlyargs)][0], self.name))
 # check that kwonlyargs that don't have default value specified are provided
 required_kwonlyargs = [a for a in allowed.kwonlyargs
 if a not in (allowed.kwonlydefaults or {})]
 missing_kwonlyargs = [a for a in required_kwonlyargs if a not in kwargs]
 if missing_kwonlyargs:
 raise MethodSignatureError(
 '%s requires keyword-only argument(s) "%s"' %
 (self.name, '", "'.join(missing_kwonlyargs)))

 def _update_original(self, name, obj):
 if hasattr(obj, '__dict__') and name in obj.__dict__:
 self.original = obj.__dict__[name]
 else:
 self.original = getattr(obj, name)
 self._update_argspec()

 def _update_argspec(self):
 original = self.__dict__.get('original')
 if original:
 try:
 if sys.version_info < (3, 0):
 self.argspec = FullArgSpec(inspect.getargspec(original))
 else:
 self.argspec = FullArgSpec(inspect.getfullargspec(original))
 except TypeError:
 # built-in function: fall back to stupid processing and hope the
 # builtins don't change signature
 pass

 def _normalize_named_args(self, *kargs, **kwargs):
 argspec = self.argspec
 default = {'kargs': kargs, 'kwargs': kwargs}
 if not argspec:
 return default
 ret = {'kargs': (), 'kwargs': kwargs}
 if inspect.ismethod(self.original):
 args = argspec.args[1:]
 else:
 args = argspec.args
 for i, arg in enumerate(kargs):
 if len(args) <= i:
 return default
 ret['kwargs'][args[i]] = arg
 return ret

 def __raise(self, exception, message):
 """Safe internal raise implementation.

 In case we're patching builtins, it's important to reset the
 expectation before raising any exceptions or else things like
 open() might be stubbed out and the resulting runner errors are very
 difficult to diagnose.
 """
 self.reset()
 raise exception(message)

 def match_args(self, given_args):
 """Check if the set of given arguments matches this expectation."""
 expected_args = self.args
 given_args = self._normalize_named_args(
 *given_args['kargs'], **given_args['kwargs'])
 if (expected_args == given_args or expected_args is None):
 return True
 if (len(given_args['kargs']) != len(expected_args['kargs']) or
 len(given_args['kwargs']) != len(expected_args['kwargs']) or
 (sorted(given_args['kwargs'].keys()) !=
 sorted(expected_args['kwargs'].keys()))):
 return False
 for i, arg in enumerate(given_args['kargs']):
 if not _arguments_match(arg, expected_args['kargs'][i]):
 return False
 for k, v in given_args['kwargs'].items():
 if not _arguments_match(v, expected_args['kwargs'][k]):
 return False
 return True

[docs] def mock(self):
 """Return the mock associated with this expectation."""
 return self._mock

[docs] def with_args(self, *kargs, **kwargs):
 """Override the arguments used to match this expectation's method.

 Args:
 - kargs: optional keyword arguments
 - kwargs: optional named arguments

 Returns:
 - self, i.e. can be chained with other Expectation methods
 """
 if not self._callable:
 self.__raise(FlexmockError, "can't use with_args() with attribute stubs")
 self._update_argspec()
 if self.argspec:
 # do this outside try block as TypeError is way too general and catches
 # unrelated errors in the verify signature code
 self._verify_signature_match(*kargs, **kwargs)
 self.args = self._normalize_named_args(*kargs, **kwargs)
 else:
 self.args = {'kargs': kargs, 'kwargs': kwargs}
 return self

[docs] def and_return(self, *values):
 """Override the return value of this expectation's method.

 When and_return is given multiple times, each value provided is returned
 on successive invocations of the method. It is also possible to mix
 and_return with and_raise in the same manner to alternate between returning
 a value and raising and exception on different method invocations.

 When combined with the one_by_one property, value is treated as a list of
 values to be returned in the order specified by successive calls to this
 method rather than a single list to be returned each time.

 Args:
 - values: optional list of return values, defaults to None if not given

 Returns:
 - self, i.e. can be chained with other Expectation methods
 """
 if not values:
 value = None
 elif len(values) == 1:
 value = values[0]
 else:
 value = values

 if not self._callable:
 _setattr(self._mock, self.name, value)
 return self

 return_values = _getattr(self, 'return_values')
 if not _getattr(self, '_one_by_one'):
 value = ReturnValue(value)
 return_values.append(value)
 else:
 try:
 return_values.extend([ReturnValue(v) for v in value])
 except TypeError:
 return_values.append(ReturnValue(value))
 return self

[docs] def times(self, number):
 """Number of times this expectation's method is expected to be called.

 There are also 3 aliases for the times() method:

 - once() -> times(1)
 - twice() -> times(2)
 - never() -> times(0)

 Args:
 - number: int

 Returns:
 - self, i.e. can be chained with other Expectation methods
 """
 if not self._callable:
 self.__raise(FlexmockError, "can't use times() with attribute stubs")
 expected_calls = _getattr(self, 'expected_calls')
 modifier = _getattr(self, 'modifier')
 expected_calls[modifier] = number
 return self

[docs] def one_by_one(self):
 """Modifies the return value to be treated as a list of return values.

 Each value in the list is returned on successive invocations of the method.

 Returns:
 - self, i.e. can be chained with other Expectation methods
 """
 if not self._callable:
 self.__raise(FlexmockError, "can't use one_by_one() with attribute stubs")
 if not self._one_by_one:
 self._one_by_one = True
 return_values = _getattr(self, 'return_values')
 saved_values = return_values[:]
 self.return_values = return_values = []
 for value in saved_values:
 try:
 for val in value.value:
 return_values.append(ReturnValue(val))
 except TypeError:
 return_values.append(value)
 return self

[docs] def at_least(self):
 """Modifies the associated times() expectation.

 When given, an exception will only be raised if the method is called less
 than times() specified. Does nothing if times() is not given.

 Returns:
 - self, i.e. can be chained with other Expectation methods
 """
 if not self._callable:
 self.__raise(FlexmockError, "can't use at_least() with attribute stubs")
 expected_calls = _getattr(self, 'expected_calls')
 modifier = _getattr(self, 'modifier')
 if expected_calls[AT_LEAST] is not None or modifier == AT_LEAST:
 self.__raise(FlexmockError, 'cannot use at_least modifier twice')
 if modifier == AT_MOST and expected_calls[AT_MOST] is None:
 self.__raise(FlexmockError, 'cannot use at_least with at_most unset')
 self.modifier = AT_LEAST
 return self

[docs] def at_most(self):
 """Modifies the associated "times" expectation.

 When given, an exception will only be raised if the method is called more
 than times() specified. Does nothing if times() is not given.

 Returns:
 - self, i.e. can be chained with other Expectation methods
 """
 if not self._callable:
 self.__raise(FlexmockError, "can't use at_most() with attribute stubs")
 expected_calls = _getattr(self, 'expected_calls')
 modifier = _getattr(self, 'modifier')
 if expected_calls[AT_MOST] is not None or modifier == AT_MOST:
 self.__raise(FlexmockError, 'cannot use at_most modifier twice')
 if modifier == AT_LEAST and expected_calls[AT_LEAST] is None:
 self.__raise(FlexmockError, 'cannot use at_most with at_least unset')
 self.modifier = AT_MOST
 return self

[docs] def ordered(self):
 """Makes the expectation respect the order of should_receive statements.

 An exception will be raised if methods are called out of order, determined
 by order of should_receive calls in the test.

 Returns:
 - self, i.e. can be chained with other Expectation methods
 """
 if not self._callable:
 self.__raise(FlexmockError, "can't use ordered() with attribute stubs")
 self._ordered = True
 FlexmockContainer.ordered.append(self)
 return self

[docs] def when(self, func):
 """Sets an outside resource to be checked before executing the method.

 Args:
 - func: function to call to check if the method should be executed

 Returns:
 - self, i.e. can be chained with other Expectation methods
 """
 if not self._callable:
 self.__raise(FlexmockError, "can't use when() with attribute stubs")
 if not hasattr(func, '__call__'):
 self.__raise(FlexmockError, 'when() parameter must be callable')
 self.runnable = func
 return self

[docs] def and_raise(self, exception, *kargs, **kwargs):
 """Specifies the exception to be raised when this expectation is met.

 Args:
 - exception: class or instance of the exception
 - kargs: optional keyword arguments to pass to the exception
 - kwargs: optional named arguments to pass to the exception

 Returns:
 - self, i.e. can be chained with other Expectation methods
 """
 if not self._callable:
 self.__raise(FlexmockError, "can't use and_raise() with attribute stubs")
 args = {'kargs': kargs, 'kwargs': kwargs}
 return_values = _getattr(self, 'return_values')
 return_values.append(ReturnValue(raises=exception, value=args))
 return self

[docs] def replace_with(self, function):
 """Gives a function to run instead of the mocked out one.

 Args:
 - function: callable

 Returns:
 - self, i.e. can be chained with other Expectation methods
 """
 if not self._callable:
 self.__raise(FlexmockError, "can't use replace_with() with attribute/property stubs")
 replace_with = _getattr(self, '_replace_with')
 original = self.__dict__.get('original')
 if replace_with:
 self.__raise(FlexmockError, 'replace_with cannot be specified twice')
 if function == original:
 self._pass_thru = True
 self._replace_with = function
 return self

[docs] def and_yield(self, *kargs):
 """Specifies the list of items to be yielded on successive method calls.

 In effect, the mocked object becomes a generator.

 Returns:
 - self, i.e. can be chained with other Expectation methods
 """
 if not self._callable:
 self.__raise(
 FlexmockError, "can't use and_yield() with attribute stubs")
 return self.and_return(iter(kargs))

 def verify(self, final=True):
 """Verify that this expectation has been met.

 Args:
 final: boolean, True if no further calls to this method expected
 (skip checking at_least expectations when False)

 Raises:
 MethodCallError Exception
 """
 failed, message = self._verify_number_of_calls(final)
 if failed and not self._verified:
 self._verified = True
 self.__raise(
 MethodCallError,
 '%s expected to be called %s times, called %s times' %
 (_format_args(self.name, self.args), message, self.times_called))

 def _verify_number_of_calls(self, final):
 failed = False
 message = ''
 expected_calls = _getattr(self, 'expected_calls')
 times_called = _getattr(self, 'times_called')
 if expected_calls[EXACTLY] is not None:
 message = 'exactly %s' % expected_calls[EXACTLY]
 if final:
 if times_called != expected_calls[EXACTLY]:
 failed = True
 else:
 if times_called > expected_calls[EXACTLY]:
 failed = True
 else:
 if final and expected_calls[AT_LEAST] is not None:
 message = 'at least %s' % expected_calls[AT_LEAST]
 if times_called < expected_calls[AT_LEAST]:
 failed = True
 if expected_calls[AT_MOST] is not None:
 if message:
 message += ' and '
 message += 'at most %s' % expected_calls[AT_MOST]
 if times_called > expected_calls[AT_MOST]:
 failed = True
 return failed, message

 def reset(self):
 """Returns the methods overriden by this expectation to their originals."""
 _mock = _getattr(self, '_mock')
 if not isinstance(_mock, Mock):
 original = self.__dict__.get('original')
 if original:
 # name may be unicode but pypy demands dict keys to be str
 name = str(_getattr(self, 'name'))
 if (hasattr(_mock, '__dict__') and
 name in _mock.__dict__ and
 self._local_override):
 delattr(_mock, name)
 elif (hasattr(_mock, '__dict__') and
 name in _mock.__dict__ and
 type(_mock.__dict__) is dict):
 _mock.__dict__[name] = original
 else:
 if self.method_type == staticmethod and sys.version_info < (3, 0):
 # on some Python 2 implementations (e.g. pypy), just assigning
 # the original staticmethod would make it a normal method,
 # thus an additional "self" argument would be passed to it,
 # we need to explicitly cast it to staticmethod
 setattr(_mock, name, staticmethod(original))
 else:
 setattr(_mock, name, original)
 del self

[docs]class Mock(object):
 """Fake object class returned by the flexmock() function."""

 def __init__(self, **kwargs):
 """Mock constructor.

 Args:
 - kwargs: dict of attribute/value pairs used to initialize the mock object
 """
 self._object = self
 for attr, value in kwargs.items():
 if type(value) is property:
 setattr(self.__class__, attr, value)
 else:
 setattr(self, attr, value)

 def __enter__(self):
 return self._object

 def __exit__(self, type, value, traceback):
 pass

 def __call__(self, *kargs, **kwargs):
 """Hack to make Expectation.mock() work with parens."""
 return self

 def __iter__(self):
 """Makes the mock object iterable.

 Call the instance's version of __iter__ if available, otherwise yield self.
 """
 if (hasattr(self, '__dict__') and type(self.__dict__) is dict and
 '__iter__' in self.__dict__):
 for item in self.__dict__['__iter__'](self):
 yield item
 else:
 yield self

[docs] def should_receive(self, name):
 """Replaces the specified attribute with a fake.

 Args:
 - name: string name of the attribute to replace

 Returns:
 - Expectation object which can be used to modify the expectations
 on the fake attribute
 """
 if name in UPDATED_ATTRS:
 raise FlexmockError('unable to replace flexmock methods')
 chained_methods = None
 obj = _getattr(self, '_object')
 if '.' in name:
 name, chained_methods = name.split('.', 1)
 name = _update_name_if_private(obj, name)
 _ensure_object_has_named_attribute(obj, name)
 if chained_methods:
 if (not isinstance(obj, Mock) and not hasattr(getattr(obj, name), '__call__')):
 return_value = _create_partial_mock(getattr(obj, name))
 else:
 return_value = Mock()
 self._create_expectation(obj, name, return_value)
 return return_value.should_receive(chained_methods)
 else:
 return self._create_expectation(obj, name)

[docs] def should_call(self, name):
 """Creates a spy.

 This means that the original method will be called rather than the fake
 version. However, we can still keep track of how many times it's called and
 with what arguments, and apply expectations accordingly.

 should_call is meaningless/not allowed for non-callable attributes.

 Args:
 - name: string name of the method

 Returns:
 - Expectation object
 """
 expectation = self.should_receive(name)
 return expectation.replace_with(expectation.__dict__.get('original'))

[docs] def new_instances(self, *kargs):
 """Overrides __new__ method on the class to return custom objects.

 Alias for should_receive('__new__').and_return(kargs).one_by_one

 Args:
 - kargs: objects to return on each successive call to __new__

 Returns:
 - Expectation object
 """
 if _isclass(self._object):
 return self.should_receive('__new__').and_return(kargs).one_by_one
 else:
 raise FlexmockError('new_instances can only be called on a class mock')

 def _create_expectation(self, obj, name, return_value=None):
 if self not in FlexmockContainer.flexmock_objects:
 FlexmockContainer.flexmock_objects[self] = []
 expectation = self._save_expectation(name, return_value)
 FlexmockContainer.add_expectation(self, expectation)
 if _isproperty(obj, name):
 self._update_property(expectation, name, return_value)
 elif (isinstance(obj, Mock) or
 hasattr(getattr(obj, name), '__call__') or
 _isclass(getattr(obj, name))):
 self._update_method(expectation, name)
 else:
 self._update_attribute(expectation, name, return_value)
 return expectation

 def _save_expectation(self, name, return_value=None):
 if name in [x.name for x in
 FlexmockContainer.flexmock_objects[self]]:
 expectation = [x for x in FlexmockContainer.flexmock_objects[self]
 if x.name == name][0]
 expectation = Expectation(
 self._object, name=name, return_value=return_value,
 original=expectation.__dict__.get('original'),
 method_type=expectation.__dict__.get("method_type"))
 else:
 expectation = Expectation(
 self._object, name=name, return_value=return_value)
 return expectation

 def _update_class_for_magic_builtins(self, obj, name):
 """Fixes MRO for builtin methods on new-style objects.

 On 2.7+ and 3.2+, replacing magic builtins on instances of new-style
 classes has no effect as the one attached to the class takes precedence.
 To work around it, we update the class' method to check if the instance
 in question has one in its own __dict__ and call that instead.
 """
 if not (name.startswith('__') and name.endswith('__') and len(name) > 4):
 return
 original = getattr(obj.__class__, name)

 def updated(self, *kargs, **kwargs):
 if (hasattr(self, '__dict__') and type(self.__dict__) is dict and
 name in self.__dict__):
 return self.__dict__[name](*kargs, **kwargs)
 else:
 return original(self, *kargs, **kwargs)
 setattr(obj.__class__, name, updated)
 if _get_code(updated) != _get_code(original):
 self._create_placeholder_mock_for_proper_teardown(
 obj.__class__, name, original)

 def _create_placeholder_mock_for_proper_teardown(self, obj, name, original):
 """Ensures that the given function is replaced on teardown."""
 mock = Mock()
 mock._object = obj
 expectation = Expectation(obj, name=name, original=original)
 FlexmockContainer.add_expectation(mock, expectation)

 def _update_method(self, expectation, name):
 method_instance = self._create_mock_method(name)
 obj = self._object
 if _hasattr(obj, name) and not hasattr(expectation, "original"):
 expectation._update_original(name, obj)
 expectation.method_type = self._get_method_type(obj, name, expectation.original)
 if expectation.method_type in SPECIAL_METHODS:
 expectation.original_function = getattr(obj, name)
 if (
 not _isclass(obj)
 or expectation.method_type in SPECIAL_METHODS
 or name == '__new__'
):
 method_instance = types.MethodType(method_instance, obj)
 override = _setattr(obj, name, method_instance)
 expectation._local_override = override
 if (override and not _isclass(obj) and not isinstance(obj, Mock) and
 hasattr(obj.__class__, name)):
 self._update_class_for_magic_builtins(obj, name)

 def _get_method_type(self, obj, name, method):
 """Get method type of the original method.

 Method type is saved because after mocking the base class, it is difficult to determine
 the original method type.
 """
 if not inspect.isclass(obj) and not hasattr(obj, "__class__"):
 return type(method)

 method_type = self._get_saved_method_type(obj, name, method)
 if method_type is not None:
 return method_type
 if _is_class_method(method, name):
 method_type = classmethod
 elif _is_static_method(obj, name):
 method_type = staticmethod
 else:
 method_type = type(method)
 setattr(obj, "%s__flexmock__method_type" % name, method_type)
 return method_type

 def _get_saved_method_type(self, obj, name, method):
 """Check method type of the original method if it was saved to the class or base class."""
 bound_to = getattr(method, "__self__", None)
 if bound_to is not None and inspect.isclass(bound_to):
 # Check if the method type was saved in a base class
 for cls in inspect.getmro(bound_to):
 method_type = vars(cls).get("%s__flexmock__method_type" % name)
 if method_type:
 return method_type
 elif inspect.isclass(obj):
 method_type = vars(obj).get("%s__flexmock__method_type" % name)
 if method_type:
 return method_type
 return None

 def _update_attribute(self, expectation, name, return_value=None):
 obj = self._object
 expectation._callable = False
 if _hasattr(obj, name) and not hasattr(expectation, 'original'):
 expectation._update_original(name, obj)
 override = _setattr(obj, name, return_value)
 expectation._local_override = override

 def _update_property(self, expectation, name, return_value=None):
 new_name = '_flexmock__%s' % name
 obj = self._object
 if not _isclass(obj):
 obj = obj.__class__
 expectation._callable = False
 original = getattr(obj, name)

 @property
 def updated(self):
 if (hasattr(self, '__dict__') and type(self.__dict__) is dict and
 name in self.__dict__):
 return self.__dict__[name]
 else:
 return getattr(self, new_name)
 setattr(obj, name, updated)
 if not hasattr(obj, new_name):
 # don't try to double update
 FlexmockContainer.add_teardown_property(obj, new_name)
 setattr(obj, new_name, original)
 self._create_placeholder_mock_for_proper_teardown(obj, name, original)

 def _create_mock_method(self, name):
 def _handle_exception_matching(expectation):
 return_values = _getattr(expectation, 'return_values')
 if return_values:
 raised, instance = sys.exc_info()[:2]
 message = '%s' % instance
 expected = return_values[0].raises
 if not expected:
 raise
 args = return_values[0].value
 expected_instance = expected(*args['kargs'], **args['kwargs'])
 expected_message = '%s' % expected_instance
 if _isclass(expected):
 if expected is not raised and expected not in raised.__bases__:
 raise (ExceptionClassError('expected %s, raised %s' %
 (expected, raised)))
 if args['kargs'] and type(RE_TYPE) is type(args['kargs'][0]):
 if not args['kargs'][0].search(message):
 raise (ExceptionMessageError('expected /%s/, raised "%s"' %
 (args['kargs'][0].pattern, message)))
 elif expected_message and expected_message != message:
 raise (ExceptionMessageError('expected "%s", raised "%s"' %
 (expected_message, message)))
 elif expected is not raised:
 raise (ExceptionClassError('expected "%s", raised "%s"' %
 (expected, raised)))
 else:
 raise

 def match_return_values(expected, received):
 if not isinstance(expected, tuple):
 expected = (expected,)
 if not isinstance(received, tuple):
 received = (received,)
 if len(received) != len(expected):
 return False
 for i, val in enumerate(received):
 if not _arguments_match(val, expected[i]):
 return False
 return True

 def pass_thru(expectation, runtime_self, *kargs, **kwargs):
 return_values = None
 try:
 original = _getattr(expectation, 'original')
 _mock = _getattr(expectation, '_mock')
 if _isclass(_mock):
 if expectation.method_type in SPECIAL_METHODS:
 original = _getattr(expectation, 'original_function')
 return_values = original(*kargs, **kwargs)
 else:
 return_values = original(runtime_self, *kargs, **kwargs)
 else:
 return_values = original(*kargs, **kwargs)
 except:
 return _handle_exception_matching(expectation)
 expected_values = _getattr(expectation, 'return_values')
 if (expected_values and
 not match_return_values(expected_values[0].value, return_values)):
 raise (MethodSignatureError('expected to return %s, returned %s' %
 (expected_values[0].value, return_values)))
 return return_values

 def _handle_matched_expectation(expectation, runtime_self, *kargs, **kwargs):
 if not expectation.runnable():
 raise StateError('%s expected to be called when %s is True' %
 (name, expectation._get_runnable()))
 expectation.times_called += 1
 expectation.verify(final=False)
 _pass_thru = _getattr(expectation, '_pass_thru')
 _replace_with = _getattr(expectation, '_replace_with')
 if _pass_thru:
 return pass_thru(expectation, runtime_self, *kargs, **kwargs)
 elif _replace_with:
 return _replace_with(*kargs, **kwargs)
 return_values = _getattr(expectation, 'return_values')
 if return_values:
 return_value = return_values[0]
 del return_values[0]
 return_values.append(return_value)
 else:
 return_value = ReturnValue()
 if return_value.raises:
 if _isclass(return_value.raises):
 raise return_value.raises(
 *return_value.value['kargs'], **return_value.value['kwargs'])
 else:
 raise return_value.raises
 else:
 return return_value.value

 def mock_method(runtime_self, *kargs, **kwargs):
 arguments = {'kargs': kargs, 'kwargs': kwargs}
 expectation = FlexmockContainer.get_flexmock_expectation(
 self, name, arguments)
 if expectation:
 return _handle_matched_expectation(expectation, runtime_self, *kargs, **kwargs)
 # inform the user which expectation(s) for the method were _not_ matched
 expectations = [
 e for e in reversed(FlexmockContainer.flexmock_objects.get(self, []))
 if e.name == name
]
 error_msg = _format_args(name, arguments)
 if expectations:
 for e in expectations:
 error_msg += '\nDid not match expectation %s' % _format_args(name, e.args)
 raise MethodSignatureError(error_msg)

 return mock_method

def _arg_to_str(arg):
 if type(RE_TYPE) is type(arg):
 return '/%s/' % arg.pattern
 if sys.version_info < (3, 0):
 # prior to 3.0 unicode strings are type unicode that inherits
 # from basestring along with str, in 3.0 both unicode and basestring
 # go away and str handles everything properly
 if isinstance(arg, basestring):
 return '"%s"' % (arg,)
 else:
 return '%s' % (arg,)
 else:
 if isinstance(arg, str):
 return '"%s"' % (arg,)
 else:
 return '%s' % (arg,)

def _format_args(name, arguments):
 if arguments is None:
 arguments = {'kargs': (), 'kwargs': {}}
 kargs = ', '.join(_arg_to_str(arg) for arg in arguments['kargs'])
 kwargs = ', '.join('%s=%s' % (k, _arg_to_str(v)) for k, v in arguments['kwargs'].items())
 if kargs and kwargs:
 args = '%s, %s' % (kargs, kwargs)
 else:
 args = '%s%s' % (kargs, kwargs)
 return '%s(%s)' % (name, args)

def _create_partial_mock(obj_or_class, **kwargs):
 matches = [x for x in FlexmockContainer.flexmock_objects
 if x._object is obj_or_class]
 if matches:
 mock = matches[0]
 else:
 mock = Mock()
 mock._object = obj_or_class
 for name, return_value in kwargs.items():
 if hasattr(return_value, '__call__'):
 mock.should_receive(name).replace_with(return_value)
 else:
 mock.should_receive(name).and_return(return_value)
 if not matches:
 FlexmockContainer.add_expectation(mock, Expectation(obj_or_class))
 if (_attach_flexmock_methods(mock, Mock, obj_or_class) and not _isclass(mock._object)):
 mock = mock._object
 return mock

def _attach_flexmock_methods(mock, flexmock_class, obj):
 try:
 for attr in UPDATED_ATTRS:
 if hasattr(obj, attr):
 if (_get_code(getattr(obj, attr)) is not _get_code(getattr(flexmock_class, attr))):
 return False
 for attr in UPDATED_ATTRS:
 _setattr(obj, attr, getattr(mock, attr))
 except TypeError:
 raise MockBuiltinError(
 'Python does not allow you to mock builtin objects or modules. '
 'Consider wrapping it in a class you can mock instead')
 except AttributeError:
 raise MockBuiltinError(
 'Python does not allow you to mock instances of builtin objects. '
 'Consider wrapping it in a class you can mock instead')
 return True

def _get_code(func):
 if hasattr(func, 'func_code'):
 code = 'func_code'
 elif hasattr(func, 'im_func'):
 func = func.im_func
 code = 'func_code'
 else:
 code = '__code__'
 return getattr(func, code)

def _arguments_match(arg, expected_arg):
 if expected_arg == arg:
 return True
 elif _isclass(expected_arg) and isinstance(arg, expected_arg):
 return True
 elif (type(RE_TYPE) is type(expected_arg) and
 expected_arg.search(arg)):
 return True
 else:
 return False

def _getattr(obj, name):
 """Convenience wrapper to work around custom __getattribute__."""
 return object.__getattribute__(obj, name)

def _setattr(obj, name, value):
 """Ensure we use local __dict__ where possible."""
 name = str(name) # name may be unicode but pypy demands dict keys to be str
 local_override = False
 if hasattr(obj, '__dict__') and type(obj.__dict__) is dict:
 if name not in obj.__dict__:
 # Overriding attribute locally on an instance.
 local_override = True
 obj.__dict__[name] = value
 else:
 if inspect.isclass(obj) and not vars(obj).get(name):
 # Overriding derived attribute locally on a child class.
 local_override = True
 setattr(obj, name, value)
 return local_override

def _hasattr(obj, name):
 """Ensure hasattr checks don't create side-effects for properties."""
 if (not _isclass(obj) and hasattr(obj, '__dict__') and name not in obj.__dict__):
 if name in DEFAULT_CLASS_ATTRIBUTES:
 return False # avoid false positives for things like __call__
 else:
 return hasattr(obj.__class__, name)
 else:
 return hasattr(obj, name)

def _isclass(obj):
 """Fixes stupid bug in inspect.isclass from < 2.7."""
 if sys.version_info < (2, 7):
 return isinstance(obj, (type, types.ClassType))
 else:
 return inspect.isclass(obj)

def _isproperty(obj, name):
 if isinstance(obj, Mock):
 return False
 if not _isclass(obj) and hasattr(obj, '__dict__') and name not in obj.__dict__:
 attr = getattr(obj.__class__, name)
 if type(attr) is property:
 return True
 elif _isclass(obj):
 attr = getattr(obj, name)
 if type(attr) is property:
 return True
 return False

def _update_name_if_private(obj, name):
 if (name.startswith('__') and not name.endswith('__') and not inspect.ismodule(obj)):
 if _isclass(obj):
 class_name = obj.__name__
 else:
 class_name = obj.__class__.__name__
 name = '_%s__%s' % (class_name.lstrip('_'), name.lstrip('_'))
 return name

def _ensure_object_has_named_attribute(obj, name):
 if not isinstance(obj, Mock) and not _hasattr(obj, name):
 exc_msg = '%s does not have attribute %s' % (obj, name)
 if name == '__new__':
 exc_msg = 'old-style classes do not have a __new__() method'
 raise FlexmockError(exc_msg)

def _is_class_method(method, name):
 """Check if a method is a classmethod.

 This function checks all the classes in the class method resolution in order
 to get the correct result for derived methods as well.
 """
 bound_to = getattr(method, "__self__", None)
 if not inspect.isclass(bound_to):
 return False
 for cls in inspect.getmro(bound_to):
 descriptor = vars(cls).get(name)
 if descriptor is not None:
 return isinstance(descriptor, classmethod)
 return False

def _is_static_method(obj, name):
 if sys.version_info < (3, 0):
 return isinstance(getattr(obj, name), types.FunctionType)
 try:
 return isinstance(inspect.getattr_static(obj, name), staticmethod)
 except AttributeError:
 # AttributeError is raised when mocking a proxied object
 if hasattr(obj, "__mro__"):
 for cls in inspect.getmro(obj):
 descriptor = vars(cls).get(name)
 if descriptor is not None:
 return isinstance(descriptor, staticmethod)
 return False

def flexmock_teardown():
 """Performs lexmock-specific teardown tasks."""
 saved = {}
 instances = []
 classes = []
 for mock_object, expectations in FlexmockContainer.flexmock_objects.items():
 saved[mock_object] = expectations[:]
 for expectation in expectations:
 _getattr(expectation, 'reset')()
 for expectation in expectations:
 # Remove method type attributes set by flexmock. This needs to be done after
 # resetting all the expectations because method type is needed in expectation teardown.
 if inspect.isclass(mock_object) or hasattr(mock_object, "__class__"):
 try:
 delattr(mock_object._object, "%s__flexmock__method_type" % expectation.name)
 except (AttributeError, TypeError):
 pass
 for mock in saved.keys():
 obj = mock._object
 if not isinstance(obj, Mock) and not _isclass(obj):
 instances.append(obj)
 if _isclass(obj):
 classes.append(obj)
 for obj in instances + classes:
 for attr in UPDATED_ATTRS:
 try:
 obj_dict = obj.__dict__
 if _get_code(obj_dict[attr]) is _get_code(Mock.__dict__[attr]):
 del obj_dict[attr]
 except:
 try:
 if _get_code(getattr(obj, attr)) is _get_code(Mock.__dict__[attr]):
 delattr(obj, attr)
 except AttributeError:
 pass
 FlexmockContainer.teardown_properties()
 FlexmockContainer.reset()

 # make sure this is done last to keep exceptions here from breaking
 # any of the previous steps that cleanup all the changes
 for mock_object, expectations in saved.items():
 for expectation in expectations:
 _getattr(expectation, 'verify')()

[docs]def flexmock(spec=None, **kwargs):
 """Main entry point into the flexmock API.

 This function is used to either generate a new fake object or take
 an existing object (or class or module) and use it as a basis for
 a partial mock. In case of a partial mock, the passed in object
 is modified to support basic Mock class functionality making
 it unnecessary to make successive flexmock() calls on the same
 objects to generate new expectations.

 Examples:
 >>> flexmock(SomeClass)
 >>> SomeClass.should_receive('some_method')

 NOTE: it's safe to call flexmock() on the same object, it will detect
 when an object has already been partially mocked and return it each time.

 Args:
 - spec: object (or class or module) to mock
 - kwargs: method/return_value pairs to attach to the object

 Returns:
 Mock object if no spec is provided. Otherwise return the spec object.
 """
 if spec is not None:
 return _create_partial_mock(spec, **kwargs)
 else:
 # use this intermediate class to attach properties
 klass = type('MockClass', (Mock,), {})
 return klass(**kwargs)

RUNNER INTEGRATION

def _hook_into_pytest():
 try:
 from _pytest import runner
 saved = runner.call_runtest_hook

 def call_runtest_hook(item, when, **kwargs):
 ret = saved(item, when, **kwargs)
 if when != 'call' and ret.excinfo is None:
 return ret
 if hasattr(runner.CallInfo, "from_call"):
 teardown = runner.CallInfo.from_call(flexmock_teardown, when=when)
 if hasattr(teardown, "duration"):
 # CallInfo.duration only available in Pytest 6+
 teardown.duration = ret.duration
 else:
 teardown = runner.CallInfo(flexmock_teardown, when=when)
 teardown.result = None
 if ret.excinfo is not None:
 teardown.excinfo = ret.excinfo
 return teardown
 runner.call_runtest_hook = call_runtest_hook

 except ImportError:
 pass
_hook_into_pytest()

def _hook_into_doctest():
 try:
 from doctest import DocTestRunner
 saved = DocTestRunner.run

 def run(self, test, compileflags=None, out=None, clear_globs=True):
 try:
 return saved(self, test, compileflags, out, clear_globs)
 finally:
 flexmock_teardown()
 DocTestRunner.run = run
 except ImportError:
 pass
_hook_into_doctest()

def _patch_test_result(klass):
 """Patches flexmock into any class that inherits unittest.TestResult.

 This seems to work well for majority of test runners. In the case of nose
 it's not even necessary as it doesn't override unittest.TestResults's
 addSuccess and addFailure methods so simply patching unittest works
 out of the box for nose.

 For those that do inherit from unittest.TestResult and override its
 stopTest and addSuccess methods, patching is pretty straightforward
 (numerous examples below).

 The reason we don't simply patch unittest's parent TestResult class
 is stopTest and addSuccess in the child classes tend to add messages
 into the output that we want to override in case flexmock generates
 its own failures.
 """

 saved_addSuccess = klass.addSuccess
 saved_stopTest = klass.stopTest

 def addSuccess(self, test):
 self._pre_flexmock_success = True

 def stopTest(self, test):
 if _get_code(saved_stopTest) is not _get_code(stopTest):
 # if parent class was for some reason patched, avoid calling
 # flexmock_teardown() twice and delegate up the class hierarchy
 # this doesn't help if there is a gap and only the parent's
 # parent class was patched, but should cover most screw-ups
 try:
 flexmock_teardown()
 saved_addSuccess(self, test)
 except:
 if hasattr(self, '_pre_flexmock_success'):
 self.addFailure(test, sys.exc_info())
 if hasattr(self, '_pre_flexmock_success'):
 del self._pre_flexmock_success
 return saved_stopTest(self, test)

 if klass.stopTest is not stopTest:
 klass.stopTest = stopTest

 if klass.addSuccess is not addSuccess:
 klass.addSuccess = addSuccess

def _hook_into_unittest():
 import unittest
 try:
 try:
 # only valid TestResult class for unittest is TextTestResult
 _patch_test_result(unittest.TextTestResult)
 except AttributeError:
 # ugh, python2.4
 _patch_test_result(unittest._TextTestResult)
 except: # let's not take any chances
 pass
_hook_into_unittest()

def _hook_into_unittest2():
 try:
 try:
 from unittest2 import TextTestResult
 except ImportError:
 # Django has its own copy of unittest2 it uses as fallback
 from django.utils.unittest import TextTestResult
 _patch_test_result(TextTestResult)
 except:
 pass
_hook_into_unittest2()

def _hook_into_twisted():
 try:
 from twisted.trial import reporter
 _patch_test_result(reporter.MinimalReporter)
 _patch_test_result(reporter.TextReporter)
 _patch_test_result(reporter.VerboseTextReporter)
 _patch_test_result(reporter.TreeReporter)
 except:
 pass
_hook_into_twisted()

def _hook_into_subunit():
 try:
 import subunit
 _patch_test_result(subunit.TestProtocolClient)
 except:
 pass
_hook_into_subunit()

def _hook_into_zope():
 try:
 from zope import testrunner
 _patch_test_result(testrunner.runner.TestResult)
 except:
 pass
_hook_into_zope()

def _hook_into_testtools():
 try:
 from testtools import testresult
 _patch_test_result(testresult.TestResult)
 except:
 pass
_hook_into_testtools()

def _hook_into_teamcity_unittest():
 try:
 from tcunittest import TeamcityTestResult
 _patch_test_result(TeamcityTestResult)
 except:
 pass
_hook_into_teamcity_unittest()

Dark magic to make the flexmock module itself callable.
So that you can say:
import flexmock
instead of:
from flexmock import flexmock
class _CallableModule(types.ModuleType):
 def __init__(self):
 super(_CallableModule, self).__init__('flexmock')
 self._realmod = sys.modules['flexmock']
 sys.modules['flexmock'] = self
 self.__doc__ = flexmock.__doc__

 def __dir__(self):
 return dir(self._realmod)

 def __call__(self, *args, **kw):
 return self._realmod.flexmock(*args, **kw)

 def __getattr__(self, attr):
 return getattr(self._realmod, attr)

_CallableModule()

 All modules for which code is available

	flexmock

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 flexmock - Testing Library

 		
 Start Here

 		
 Creating fake objects

 		
 Replacing parts of existing objects and classes (stubs)

 		
 Creating and checking expectations

 		
 Mocks

 		
 Spies

 		
 Summary

 		
 Usage Documentation

 		
 Definitions

 		
 Overview

 		
 Example Usage

 		
 Setup

 		
 Fake objects

 		
 Partial mocks

 		
 Attributes and properties

 		
 Shorthand

 		
 Class level mocks

 		
 Automatically checked expectations

 		
 Exceptions

 		
 Spies (proxies)

 		
 Multiple return values

 		
 Fake new instances

 		
 Generators

 		
 Private methods

 		
 Call order

 		
 State Support

 		
 Chained methods

 		
 Replacing methods

 		
 Builtin functions

 		
 Expectation Matching

 		
 Style

 		
 flexmock API

 		
 Changelog

 		
 Release 0.10.10

 		
 Fixed

 		
 Release 0.10.9

 		
 Fixed

 		
 Release 0.10.8

 		
 Fixed

 		
 Release 0.10.7

 		
 Fixed

 		
 Release 0.10.6

 		
 Fixed

 		
 Release 0.10.5

 		
 Added

 		
 Fixed

 		
 Release 0.10.4

 		
 Release 0.10.3

 		
 Release 0.10.2

 		
 Release 0.10.1

 		
 Release 0.10.0

 		
 Release 0.9.7

 		
 Release 0.9.6

 		
 Release 0.9.5

 		
 Release 0.9.4

 		
 Release 0.9.3

 		
 Release 0.9.2

 		
 Release 0.9.1

 		
 Release 0.9.0

 		
 Release 0.8.1

 		
 Release 0.8.0

 		
 Release 0.7.4.2

 		
 Release 0.7.4.1

 		
 Release 0.7.4

 		
 Release 0.7.3

 		
 Release 0.7.2

 		
 Release 0.7.1

 		
 Release 0.7.0

 		
 Release 0.6.9

 		
 Release 0.6.8

 		
 Release 0.6.7

 		
 Release 0.6.6

 		
 Release 0.6.5

 		
 Release 0.6.4

 		
 Release 0.6.3

 		
 Release 0.6.2

 		
 Release 0.6.1

 		
 Release 0.6

 		
 Release 0.5

 		
 Release 0.4

 		
 Release 0.3

 		
 Mock Library Comparison

 		
 (flexmock for Mox or Mock users.)

 		
 Simple fake object (attributes only)

 		
 Simple fake object (with methods)

 		
 Simple mock

 		
 Creating partial mocks

 		
 Ensure calls are made in specific order

 		
 Raising exceptions

 		
 Override new instances of a class

 		
 Verify a method was called multiple times

 		
 Mock chained methods

 		
 Mock context manager

 		
 Mocking the builtin open used as a context manager

_static/up.png

_static/up-pressed.png

